Evolutionary Algorithm Based Capacity Maximization of 5G/B5G Hybrid Pre-Coding Systems
نویسندگان
چکیده
منابع مشابه
A Simple Adaptive Throughput Maximization Algorithm for Adaptive Modulation and Coding Systems with Hybrid ARQ
For delay-tolerant data services, adaptive transmission with the modulation and coding scheme (MCS) adjusted according to the instantaneous channel condition can maximize the throughput. In time-varying channels, the performance degradation of adaptive transmission caused by delayed or inaccurate channel condition feedback can be mitigated with the use of hybrid automatic repeat request (HARQ)....
متن کاملRelational Databases Query Optimization using Hybrid Evolutionary Algorithm
Optimizing the database queries is one of hard research problems. Exhaustive search techniques like dynamic programming is suitable for queries with a few relations, but by increasing the number of relations in query, much use of memory and processing is needed, and the use of these methods is not suitable, so we have to use random and evolutionary methods. The use of evolutionary methods, beca...
متن کاملEconomic Dispatch of Power Systems using Hybrid Particle Swarm Algorithm based on Sin-Cos Accleration Coefficient
Abstract: Distribution economic burden in power system is one of the important and essential issues in power plant production planning. This thesis presents the economic burden for generating power plants with smooth and uneven functions and considering the constraints of the power plant (steam valve, forbidden areas, with and without transmission losses) in a multi-generator power system. The ...
متن کاملA Hybrid Quantum Evolutionary Algorithm
This paper proposes a Hybrid Quantum Evolutionary Algorithm. Quantum computing is capable of processing huge numbers of quantum states simultaneously, in parallel, (“quantum parallelism”), whereas evolutionary computing can only process one chromosome per processor. In theory, QC ought to be able to process upto all possible points in a 2 search space (of N bit chromosomes). An evolutionary alg...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2020
ISSN: 1424-8220
DOI: 10.3390/s20185338